3.37 \(\int \frac{3+2 x}{\sqrt{-3-4 x-x^2} (3+4 x+2 x^2)} \, dx\)

Optimal. Leaf size=17 \[ \tanh ^{-1}\left (\frac{x}{\sqrt{-x^2-4 x-3}}\right ) \]

[Out]

ArcTanh[x/Sqrt[-3 - 4*x - x^2]]

________________________________________________________________________________________

Rubi [A]  time = 0.0224239, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {1027, 206} \[ \tanh ^{-1}\left (\frac{x}{\sqrt{-x^2-4 x-3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(3 + 2*x)/(Sqrt[-3 - 4*x - x^2]*(3 + 4*x + 2*x^2)),x]

[Out]

ArcTanh[x/Sqrt[-3 - 4*x - x^2]]

Rule 1027

Int[((g_) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol]
 :> Dist[g, Subst[Int[1/(a + (c*d - a*f)*x^2), x], x, x/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f,
 g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0] && EqQ[2*h*d - g*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{3+2 x}{\sqrt{-3-4 x-x^2} \left (3+4 x+2 x^2\right )} \, dx &=3 \operatorname{Subst}\left (\int \frac{1}{3-3 x^2} \, dx,x,\frac{x}{\sqrt{-3-4 x-x^2}}\right )\\ &=\tanh ^{-1}\left (\frac{x}{\sqrt{-3-4 x-x^2}}\right )\\ \end{align*}

Mathematica [C]  time = 0.298228, size = 165, normalized size = 9.71 \[ \frac{1}{6} \left (\sqrt{1-2 i \sqrt{2}} \left (\sqrt{2}+i\right ) \tanh ^{-1}\left (\frac{\left (2-i \sqrt{2}\right ) x-2 i \sqrt{2}+2}{\sqrt{2+4 i \sqrt{2}} \sqrt{-x^2-4 x-3}}\right )+\sqrt{1+2 i \sqrt{2}} \left (\sqrt{2}-i\right ) \tanh ^{-1}\left (\frac{\left (2+i \sqrt{2}\right ) x+2 i \sqrt{2}+2}{\sqrt{2-4 i \sqrt{2}} \sqrt{-x^2-4 x-3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(3 + 2*x)/(Sqrt[-3 - 4*x - x^2]*(3 + 4*x + 2*x^2)),x]

[Out]

(Sqrt[1 - (2*I)*Sqrt[2]]*(I + Sqrt[2])*ArcTanh[(2 - (2*I)*Sqrt[2] + (2 - I*Sqrt[2])*x)/(Sqrt[2 + (4*I)*Sqrt[2]
]*Sqrt[-3 - 4*x - x^2])] + Sqrt[1 + (2*I)*Sqrt[2]]*(-I + Sqrt[2])*ArcTanh[(2 + (2*I)*Sqrt[2] + (2 + I*Sqrt[2])
*x)/(Sqrt[2 - (4*I)*Sqrt[2]]*Sqrt[-3 - 4*x - x^2])])/6

________________________________________________________________________________________

Maple [B]  time = 0.091, size = 94, normalized size = 5.5 \begin{align*} -{\frac{\sqrt{4}\sqrt{3}}{6}\sqrt{3\,{\frac{{x}^{2}}{ \left ( -3/2-x \right ) ^{2}}}-12}{\it Artanh} \left ( 3\,{\frac{x}{-3/2-x}{\frac{1}{\sqrt{3\,{\frac{{x}^{2}}{ \left ( -3/2-x \right ) ^{2}}}-12}}}} \right ){\frac{1}{\sqrt{{ \left ({{x}^{2} \left ( -{\frac{3}{2}}-x \right ) ^{-2}}-4 \right ) \left ( 1+{x \left ( -{\frac{3}{2}}-x \right ) ^{-1}} \right ) ^{-2}}}}} \left ( 1+{x \left ( -{\frac{3}{2}}-x \right ) ^{-1}} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+2*x)/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x)

[Out]

-1/6*3^(1/2)*4^(1/2)/((x^2/(-3/2-x)^2-4)/(1+x/(-3/2-x))^2)^(1/2)/(1+x/(-3/2-x))*(3*x^2/(-3/2-x)^2-12)^(1/2)*ar
ctanh(3*x/(-3/2-x)/(3*x^2/(-3/2-x)^2-12)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{2 \, x + 3}{{\left (2 \, x^{2} + 4 \, x + 3\right )} \sqrt{-x^{2} - 4 \, x - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*x + 3)/((2*x^2 + 4*x + 3)*sqrt(-x^2 - 4*x - 3)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.79492, size = 142, normalized size = 8.35 \begin{align*} -\frac{1}{4} \, \log \left (-\frac{2 \, \sqrt{-x^{2} - 4 \, x - 3} x + 4 \, x + 3}{x^{2}}\right ) + \frac{1}{4} \, \log \left (\frac{2 \, \sqrt{-x^{2} - 4 \, x - 3} x - 4 \, x - 3}{x^{2}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="fricas")

[Out]

-1/4*log(-(2*sqrt(-x^2 - 4*x - 3)*x + 4*x + 3)/x^2) + 1/4*log((2*sqrt(-x^2 - 4*x - 3)*x - 4*x - 3)/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{2 x + 3}{\sqrt{- \left (x + 1\right ) \left (x + 3\right )} \left (2 x^{2} + 4 x + 3\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(2*x**2+4*x+3)/(-x**2-4*x-3)**(1/2),x)

[Out]

Integral((2*x + 3)/(sqrt(-(x + 1)*(x + 3))*(2*x**2 + 4*x + 3)), x)

________________________________________________________________________________________

Giac [B]  time = 1.16539, size = 132, normalized size = 7.76 \begin{align*} \frac{1}{2} \, \log \left (\frac{2 \,{\left (\sqrt{-x^{2} - 4 \, x - 3} - 1\right )}}{x + 2} + \frac{3 \,{\left (\sqrt{-x^{2} - 4 \, x - 3} - 1\right )}^{2}}{{\left (x + 2\right )}^{2}} + 1\right ) - \frac{1}{2} \, \log \left (\frac{2 \,{\left (\sqrt{-x^{2} - 4 \, x - 3} - 1\right )}}{x + 2} + \frac{{\left (\sqrt{-x^{2} - 4 \, x - 3} - 1\right )}^{2}}{{\left (x + 2\right )}^{2}} + 3\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+2*x)/(2*x^2+4*x+3)/(-x^2-4*x-3)^(1/2),x, algorithm="giac")

[Out]

1/2*log(2*(sqrt(-x^2 - 4*x - 3) - 1)/(x + 2) + 3*(sqrt(-x^2 - 4*x - 3) - 1)^2/(x + 2)^2 + 1) - 1/2*log(2*(sqrt
(-x^2 - 4*x - 3) - 1)/(x + 2) + (sqrt(-x^2 - 4*x - 3) - 1)^2/(x + 2)^2 + 3)